
JOURNAL OF COMPUTATIONAL PHYSICS 7, 102-119 (1971) 

On the Numerical Solution of a Heat Equation Associated 
with a Thermal Print Head. II 

JOHN LL. MORRIS 

Department of Mathematics, University of Dundee, Dundee, Scotland 

Received May 19, 1970 

One of the variety of Hopscotch methods is considered for the numerical solution 
of a heat equation with variable coefficients defining the heat flow in a thermal print 
head. The associated heat source term is unusual in that it contains a branch point in the 
interior of the print-head as well as discontinuities of the space and time variables. 
Several numerical examples are discussed and the resulting behaviour of the difference 
scheme reported. 

1. INTRODUCTION 

In Ref. [lo] we considered the numerical solution of a heat equation which 
arose when considering the mathematical model of a thermal print head. This 
heat equation was unusual in that the three-space-dimensional partial differential 
equation had, as one of the boundary conditions, a heat equation in two space 
variables. This partial differential equation contained a source term which was a 
discontinuous function of the time and space variables. The methods used in 
Ref. [lo] were of the Alternating Direction and Locally One-Dimension types. 
It was concluded there that these schemes were reliable and accurate but, for 
physical problems under consideration, time consuming. 

In the present paper, we will again consider a thermal print head which is 
structured similarly to the model described in Ref. [lo]. There are, however, 
some fundamental differences. First, the three-dimensional print head we consider 
now has no physical heating element embedded within the surface material. 
In this model, heat is generated by an incident normal beam of electrons. This 
electron beam is active as a pulse with pulse width to so that after t, set the beam 
is switched off until such time as heat generation in the print head is required 
again. 

A second difference between the model of print head we consider here and that 
described in Ref. [lo] is that there, the surface him was considered to be so thin 
and thermal conductivity to be sufficiently large to allow us to neglect the tempera- 
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ture gradient normal to the surface. This then gave us the unusual set of equations 
alluded to earlier. Here the thermal print head has again two adjacent materials; 
one a good heat conductor and the other a poorer conductor. However, we do 
not assume the temperature gradient in the good conductor normal to the surface 
to be zero. Consequently, we obtain a single heat equation in three space dimensions 
to solve, with familiar-looking boundary conditions of the Dirichlet, Neumann, 
and Third boundary type. 

The particularly interesting feature of this model, however, is the form of the 
heat source term which arises out of the incident electron beam. As in Ref. [IO], 
the heat source term is a discontinuous function of the space variables x and y 
and the time f. The source term has a positive value for a finite depth in the print 
head but at one point has a “branch point,” i.e., at a certain value of z the source 
term becomes infinite and for larger values of z becomes zero. It is this point 
which gives rise to possible difficulties. 

The subject of this paper is, therefore, to consider some novel methods for the 
solution of partial differential equations of parabolic type (see Friedman, Ref. [3]) 
which have arisen out of work originally performed by Gordon [4] and, more 
recently, Gourlay [5, 61. These schemes are a departure from the now more 
conventional methods of alternating direction, yet are ones we think have a 
great deal to offer to the practical numerical analyst. 

The mathematical model is formulated and described in the next section. 
The difference schemes are discussed in Section 2. Several numerical experiments 
were carried out and are described in Section 4. The paper is concluded in Section 5. 

2. THE PHYSICAL PROBLEM AND ITS ASSOCIATED MATHEMATICAL FORMULATION 

A thermal print head, shown in Figs. 1 and 2, is a matrix of elements comprising 
a glass substrate upon which a thin film of a good heat-conducting material is 
deposited. The thin tilm has a small coefficient of specific heat and consequently 
reacts quickly to any change which occurs in a heat source. In contrast, the glass 
substrate has a smaller coefficient of conductivity and a higher coefficient of 
specific heat so that the substrate acts as a heat sink. 

When the electron beam is projected normally onto the element, heat is produced. 
The surface element heats up quickly and, on passing a heat-sensitive paper 
across the surface, a chemical reaction will take place, if the temperature is high 
enough. By suitable combinations of the elements being heated, characters can be 
produced on the heat-sensitive paper. This is therefore a means of printing on 
paper without involving mechanical moving parts. The speed at which printing 
can occur depends upon the thermal properties of the print head. If the materials 
used are such that persistent switchings on and off of the heat source causes an 



104 MORRIS 

SURFACE 

FIG. 1. A 5 x 5 matrix thermal print head (top view). 

THIN FILM 

\ 

GLASS SUBSTRATE 

FIG. 2. A single element of the matrix (side view). 

overall rise in temperature in the elements, a smudging effect of the characters 
will be produced which will ultimately merge into an indistinguishable mess. 
However, it is required to print separate characters as quickly as possible. Conse- 
quently, to investigate possible models with differing thin film materials, different 
glass substrates, thicknesses, heating times, ratios of “on times” and “off times,” 
etc., it is required to investigate the heat distribution in the elements of the thermal 
printer by a numerical procedure, i.e., we require to simulate the thermal print 
head numerically for different values of the physical constants appearing in the 
mathematical model. 

In our investigation, a single element of the matrix will be considered. This is 
not restrictive since to consider the complete matrix we merely omit the Neumann 
boundary conditions which we impose for the single element and apply them 
at the physical sides of the thermal print head. 
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The incident electron beam is assumed to have an electron density governed by 
a Gaussian distribution. Using a Cartesian coordinate system, it is described by 

~1 = no exp(--2(x2 + y”)/a”) 

where a is the beam diameter at which the electron density is attenuated to 
exp( -2) of the density at the centre, viz., n, . It is assumed that all the electrons 
have the same kinetic energy E, at the surface and that back scattering at interfaces 
is negligible. The electrons penetrate a finite distance into the print head. (This 
is usually arranged to be less than the thickness of the thin film, although there is 
no need for this.) The electrons lose energy along the penetration path. The 
energy E of an electron after penetrating a distance z is given by Whiddington’s 
law (see Whiddington, Refs. [l l] and [12]), viz., 

and 
E2 = Eo2 - B1z, Obz<d, (1) 

E2 = Eo2 - ,&d - ,k12(z - d), d<z<d+D, (2) 

where & and p2 are physical constants dependent upon the two materials and 
d and D are the thicknesses of the thin film and glass substrate respectively and 
where equations (1) and (2) are valid only for E 3 0. 

At any point z where 0 < z < d + D the loss of energy which has occurred 
will be E. - E per electron, or 

I 
no{Eo - [Eo2 - /%z]~/~> exp(--2(x2 + y”)/a”), O<z<d, 

’ = n,{E, - [Eo2 - ,&d - p2(z - d)]1/2} exp(-2(x2 + y2)/a2), 
(3) 

d d z < d + D, 

(4 

for the beam. 
If we assume that all the energy is dissipated in the form of heat, then the rate 

of heat generation will be 

& nohWo2 - /%,I l/2 exp(-2(x2 + y2)/a2), O<z<d, (5) 

~Mnoj?ZIEoz - ,&d - ,&(z - d)]-‘12 exp(-2(x2 + v2)/a2), d < z d d + D, 
(6) 

where we have used Eqs. (3) and (4). M is the mechanical equivalent of heat. 
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Thus 4(x, y, z) is the heat source over a period 0 < t d &, . When t, < t, the 
electron beam is switched off so that the actual heat source term for 0 < t d 24, is 

4(x, YY z){l - w - to)>, 
where H(B) is the Heaviside function defined by 

A similar expression can be obtained for larger t with multiple switchings of the 
heat source; its form is obvious and will be omitted. 

Consequently, we can now write down the partial differential equation which 
represents the temperature distribution u(x, y, z, t) in the thermal print head 
where we assume for convenience that 0 < x, y, z < 1, i.e., the print head is cubic. 
The required equation is the combination of 

a24 p1c1 T& = Kl ( a2u -p + zg + ;z;) + u - fm - to)> $j Bl(~02 - BlZlY2 
x exp(-2(x2 + y2)/a2> E&z2 - (x2 + y”)), O<z<d, 

and 

au _ K azu 
P2C2 5 - 2 ( -g& + ag 

a2u + au2 __- 
a22 1 

+ (1 - w - to)> -Tjg noS2 (~2 - ,!3,d - f12(z - d))-“” 

x exp{-2(x2 + y”)/a”} H(a2 - (x2 + Y”)), d<z<d+D, 

where p1 , cl , I& are the density, specific heat, and conductivity coefficients of 
the thin film and p2 , c2 , K2 the similar coefficients for the glass substrate. By 
defining 

Qh, Y, -G t) 

and 

K(z) 

nop1 (Eo2 - p1z>-1/2 H(a2 - (x” + y”)) 

x exp(-2(x2 + ~“)/a”), O<z<d, 

“lS2 (E,2 - &d - p2(z - d))-lj2 H(a2 - (x2 + y”)) 

x exp( -2(x2 + ~“)/a”), d<zBd+D, 

&/PSI 3 O<z<d, 
Kzlp2c2 3 d<z<d+D, 
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our heat equation can be conveniently written as 

(7) 

It can be seen from the form of K and Q that this heat equation (7) involves a 
discontinuous coefficient of z(K), and a source term which is discontinuous in all 
the variables x, y, z, and t and also has a branch point either at the point 

W z=---.- 

81 ’ 

O<z<d, 

or 

z= W - Ad + d 
P2 ’ 

d<z<d+D, 

(8) 

only one of which, of course, can occur and beyond which (larger values of z) 
Q is zero. 

Problems containing discontinuities in the source terms were considered in 
Ref. [lo] where the difference schemes were found to behave well. The possible 
cause of difficulty in the present study is the point given by Eqs. (8) or (9). Theoreti- 
cally at such a point the heat source becomes infinite. 

To solve this problem of the branch point, we are faced with (at least) three 
alternatives. 

(1) A change of variable to eliminate the branch point. 
(2) Derive an analytical solution in a neighbourhood of the branch point 

and patch the solution obtained with the numerical solution in the rest of the 
region. That is, use the analytical solution on the boundary of the region around 
the branch point as boundary conditions for the numerical problem in the rest 
of the region. 

(3) Neglect the branch point, in some way. 

Usually we would surmise that alternative (3) was not facing the problem and 
that either (1) or (2) should be attempted. However, we have chosen to use 
approach (3) for the following reasons. 

The assumption that all the energy is converted to heat is clearly an approxi- 
mation to the actual physical phenomenon that takes place. Various other dissipa- 
tions of energy such as electromagnetic radiation, energy lost by the emission 
of secondary electrons, and energy causing structural changes in the specimen 
may take place. (See Calbick, Ref. [l], for a discussion of the interaction of 
electron beams with thin films.) In the main, these dissipations will be minor 
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compared to the heat generation effect. However, close to the point where the 
energy becomes zero, the additional dissipations will have a more marked effect. 
That is, in a region close to the point where E becomes zero, the heat source 
term we have devised is not valid. In other words, in practice no branch point 
can occur. Since we will not know the region where the side dissipations have a 
significant effect we arrange for a discretization of the continuous problem so that 
that point where E becomes zero lies between the grid points. Hopefully, by 
allowing the mesh length h to be sufficiently large so that the distance from the 
nearest grid point to the branch point is also sufficiently large, the validity of the 
source term at the grid points is ensured. This construction still allows the 
possibility of a large source term but discounts the possibility of an infinite one. 
Clearly on physical grounds, this is sensible. 

Consequently, we can justify not using approaches (1) and (2) above on the 
grounds that to eliminate by a change of variable a physically meaningless branch 
point is futile and to obtain an analytical solution in a small region where in that 
very region the uncertainty of the source is greatest, is again futile. 

This solves, to a certain extent, what to do in terms of the numerical problem. 
We have still not eliminated the possibility of the difference scheme we propose 
behaving eratically in the region of E = 0. The numerical experiments will answer 
that. 

We have left to impose the necessary boundary and initial conditions. These 
are given as follows: 

2u ax= 0 9 x = 0, I, O<Ydl 

au 0 
O<z<l, (10) 

av= ’ y = 0, 1, O<x<l 

u = constant, z=l 

t$ + h,u = 0, 
I 

0 < x, Y d 1, (11) 
z=o 

and 

U(X,Y,Z,O) =dx,Y,z), 0 < x, y, z < I, 02) 

where h, is the convective heat transfer coefficient (see Carslaw and Jaeger, Ref. [2]) 
between the thin film and the air surrounding the print head, and g(x, y, z) is a 
given function; we will take it as a given constant. 

Thus our problem is to determine u(x, y, z, t) satisfying Eqs. (7, 10, 11, and 12). 
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3. THE NUMERICAL METHOD 

In Ref. [4] Gordon considered a novel scheme for the numerical solution of 
parabolic partial differential equations. In Ref. [6] Gourlay considered the method 
of Gordon, generalized it, and derived a theoretical basis for the method as well 
as proposing additional techniques based upon the generalized method (see also 
Gourlay and McGuire [7] and McGuire [9]). Gourlay’s method has been named 
the Hopscotch scheme because of the way in which the computation proceeds. 
We will consider a three-space-dimensional version of this method for the numerical 
solution of our physical problem. To do this we need some notation. 

A rectalinear grid is superimposed on the region of computation, viz., 
(0 < x, y, z < I) x (0 < t < T), where we assume the mesh spacings in the space 
coordinates are equal, viz., 

A, = A, = A, = h, 

and the mesh spacing in the time coordinate is r. The mesh ratio is assumed 
constant and equal to r. We denote by z.& the value of the unknown function u 
atthepoint(ih,jh,kh,m~)=(x,y,z,t)fori,j,k=O,l,..., N,Nh=I,m=0,1,2 ,... 
and similarly Q’& for Q. We define the difference operators 6, , &, , 6, as the 
usual central difference operators, where 

n 
h&k = U:+l,2)ik - hi-llZ)jk 

with similar expressions for 6, and 6,. We further denote by L the differential 
operator K(z)(~~u/&~ + Pu/$J~ + a2u/az2) and by L, the difference approximation 
to L. Thus Eq. (7) can be written as 

3 = Lu + Q(x, y 
at 

z t) 3 ? * 

The finite difference method which is the obvious three-dimensional counterpart 
of the scheme of Ref. [6] can be written as 

rnfl 
%ik = U;IC + +$&c + Q;k) for i + j + k + m even, (13) 

u;;,+l = uEk + T(L~u;;E” + Q$k”) for i + j + k + m odd. 

Eq. (13) can be written in the more convenient form 

m+l 
uijk - T6~,“[&,24$;,+” + Q;:'] = U;k + d;&,U& + Qzk], (14) 
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where 

if m + i + j + k is odd, 
if m + i + j + k is even. 

The computational algorithm proceeds exactly as described in Ref. [6]. Namely, 
for those points corresponding to O$zl = 0, Eq. (14) is applied to calculate alternate 
nodal points u$’ by an explicit scheme. Having found these values, the remaining 
u$:’ corresponding to those points for which ~9::~ = 1 are calculated by what 
looks like an implicit scheme but, in fact, will be explicit in nature if the difference 
operator is of a class of E operators as defined by Gourlay in Ref. [6]. Such an 
E operator is the usual simple difference approximation 

L h = v (8,z + s,2 + 82). 

Substituting this expression for Lh into Eq. (14) will show that for 6zi1 = 1, 
those points about u$’ which usually make the scheme implicit have already 
been calculated by Eq. (14) with erjk m+l = 0, so that the scheme is computationally 
explicit. 

Gourlay [6] in a clever bit of manipulation, noticed that when Eq. (13) was 
considered in the form (14), by an additional application of (14) with m replaced 
by m + 1, the resulting schemes could be combined to give 

Now Eq. (15) reduces to the simple explicit scheme 

when ct2 = eGk is zero. Consequently, for half the points, an extremely simple 
substitution attains the approximation required at the next level of time. Having 
calculated these nodal values, Eq. (15) is then applied with 0;:” = Ock = 1 to 
obtain the remaining values of u$‘. 

We have described this part of the computational method (the full details 
may be found in Ref. [6]) to stress the point that the Hopscotch algorithm (14) 
not only allows one to dispense with the usual tridiagonal conversions but also 
allows the writing of an exceedingly fast algorithm whereby only half of the 
nodal values have any substantial computation attached to them. For the E 
operator described above, the method is unconditionally stable and has a local 
accuracy of O(@ + T). By virtue of the method, no intermediate boundary 
conditions are required, so no boundary correction techniques like those described 
in Ref. [S] are needed. 
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Thus, Eq. (15) is applied to points with i, j, k = 0, I,..., N, where for i = 0, IV, 
j = 0, N, the normal boundary conditions are applied by using the simple 
difference replacements 

au u%Xt - U-“lj7c au &+l)i* - 4k-l)j* 
ax ==(J = 2h ’ ax r=l = 2h ’ 

etc. For k = N the simple Dirichlet condition ZJ = 0 is incorporated. At k = 0 
the third boundary condition aujaz = -h,u is used, where au/az lzn,, is replaced 
in a similar fashion to the derivatives above. 

4. NUMERICAL RESULTS 

A series of numerical experiments was conducted to test the behaviour of 
the difference method (15) upon the physical problem (7). In order to test the 
programmes and to discover the behaviour of the finite difference schemes in the 
neighbourhood of a singularity, we devised a problem for which a theoretical 
solution could be determined. Consider the partial differential equation 

au -- 
xi= K ax2 ( 

a2u a2u azu - + ay2 + a22 ) + 25 cos Trx cos 7ry($b - Z)-2m 

x [r2(l - z) - m(2m + l)(# - z)-” (1 - z) + 2m(# - z)-‘1 (16) 

subject to the boundary conditions 

1 
Lo ax x=01* O<y<l* %o y=Ol. O,cx<l , , 3 . \ , ay , 3 , 1 I 

O<z<l, 

u=o, z=l, O<x,y<l; au 
z= -h,,u, z = 0; 0 ,< x, y < 1, 

and the initial condition 

24(x, y, z, 0) = cos 3-x cos ny[sin 7~~(z + /I) + [($ - z)-z”(l - z)], 

where K and 5 are constants, # is a parameter chosen to place the singularity 
so that it occurs between mesh points, and m is a parameter chosen to give the 
source function and solution required properties; in our case we chose m = 4, 
cy and fi are parameters which satisfy 

01 = 2 - $ tan-l(+), (17) 

P= & tan-Y+), 
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where 

$ = tan r&J (19) 

and 
ho = n44, (20) 

2rnj$ - 1 = h, . (21) 

Clearly the expression (19) for 4 is nonlinear. Using Eqs. (17, 20, 21), we can 
obtain that 

b= 2mT 

i 
[2 - -& tan-‘($)]. 

-- 
$ 1) 

To solve this equation for Q, we use the Newton-Raphson method, viz., 

[ 
+i + =zrn 

( l-7) 

(2 - + tan-‘(&)) 

I 

I l- 
1 

i 1 - T) (1 + #J?) 1 
(22) 

To solve Eq. (22) we need an initial estimate to 4, d,, . We used I/J = 0.45 for 
our numerical example and so with m = 0.5 we took the initial value of I$ to be 
&, = 4.0; this ensures that the associate constant h, is positive. After iteration 
so that successive iterates agreed to within 1O-4 it was found that the required 
value of r$ was 4.0535. Substituting this value of 4 into Eqs. (17 and 18), 01 and j3 
could then be determined. Consequently, h, could be calculated and as a final 
check on the accuracy of I$, z,,!J was recalculated from the values of a and /3. It was 
found to agree exactly (to eight decimal places). 

With these definitions, the solution to Eq. (16) is 

24 = cos 5-rx cos 7ry[e-Yt sin 7rf~(z + /3) + ((Z/J - ~)-~“(l - z)], (23) 

where y = 7r2K(2 + CL”). That Eq. (23) is a solution to Eq. (16) and the associated 
boundary and initial conditions can easily be checked by differentiating u from (23) 
and using the definitions (17-21). 

The difference scheme (15) was used to calculate the solution of (16) for several 
values of the mesh ratio r where the source term is “on” for all time, and valid 
for 0 < X, y, z < I. The solution was computed to 50 time steps when the maximum 
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TABLE I 

Maximum Errors at 50 Time Steps for m = 0.5, $ = 0.45, and z = 0, (Ol), 0.9, 
where Theoretical Solution Was Used at z = 1.0 

Errors 

6.1382 x lo-” 
2.58086 x 1O-3 
1.90295 x 1O-3 
1.65232 x 1O-3 
9.62693 x 1O-3 
6.46465 x 1O-3 
8.2443 x 1O-4 
3.25166 x 1O-3 
3.32104 x 1O-3 
1.88148 x 10-a 

error for several values of z is shown in Table I. r = 3.0 and the theoretical solution 
is of order one. As can be seen from the table, the errors are small and, even in the 
neighbourhood (z = 0.4 and 0.5) of the singular point, the errors are still of the 
order of lo+. 

Having satisfied ourselves that the program was indeed working and behaved 
well in the region of the singular point, we performed several experiments upon 
the physical problem described in Section 2. We chose the physical constants 
to yield a large range of temperatures; from 0 to about 1500°C. In this manner 
it was hoped that any difficulties which arose out of large fluctuations of tempera- 

FIG. 3. Graphs of temperature distribution in thermal print head for a printing cycle of 40s 
with on-off ratio = 2. 
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ture would show up in the numerical results. The results of these experiments are 
shown in Figs. 3-l 1, where a complete range of situations has been covered. 

In the results that follow, the radius of the electron beam was taken as 0.2. 
The results quoted in the graphs are for x = y = 0.5. Figure 3 shows the results 
from time t = 0 up to t = 607 where T was taken equal to 0.005 so that the mesh 
ratio I was 0.5. The electron beam was switched off after 207 and switched on 
again after 407. We define the ratios of the printing cycle to the time for which 
the heat is on as the “on-off” ratio. Thus in this case the on-off ratio was two. 

FIG. 4. Graphs of temperature distribution in thermal print head for a printing cycle of 40~ 
with on-off ratio = 1.5. 

FIG. 5. Graphs of temperature distribution in thermal print head for a printing cycle of 407 
with on-off ratio = 1.25. 
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The graphs show the temperatures in the layers z = 0, 0.1,0.2,0.3 in decreasing 
magnitude, where for lower layers the temperature is very small so that on the 
scale used no graphs appear. The branch point was taken as z = 0.05 so that 
the source term had only a positive value for z = 0.0. The thickness d of the 
thin film was taken as 0.2 opposed to the total thickness of the element being 1.0. 
The curves are those actually produced by the computer graph plotter where 
straight lines were used to connect successive computed points. The computed 
solution is clearly well-behaved. 

Figure 4 shows results similar to the experiment of Fig. 3 except the “on-oII” 
ratio was taken to be 1.5 so that the heat source was not switched off until 307. 
The heat source was again switched on at *tvr. The computed solution is again 
well-behaved. 

Figure 5 reduces still further the on-off ratio to 1.25. The printing cycle was 
again 407. 

Comparing Figs. 3, 4, and 5 shows that the only significant difference in 
prolonging the heating process is to raise very slightly the upper temperature 
achieved. In all cases, when the heat is switched off the temperature drops very 
rapidly. The problems were run for a longer period of time than that suggested 
by the graphs and in no case was there a build up of temperature in the print head. 

Figure 6 shows an example of more than a single switching of the heat source. 
The printing period has been reduced to 207. The computed results again extend 
to 607 and the on-off ratio is two. 

Figure 7 has a similar printing cycle to Fig. 6 except the on-off ratio is four, 
i.e., the beam is on for less time than it is off. 

10 20 30 40 50 60’ 

FIG. 6. Graphs of temperature distribution in thermal print head over several printing cycles 
each of 207 duration with on-off ratio = 2. 
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Figure 8 shows a further reduction in the printing period. The computed results 
still extend to 607 with an on-off ratio of two. The printing cycle was 10~. 

Figure 9, with a reduced vertical scale to conserve space, shows the effect of 
applying an on-off ratio of four to the printing cycle of 10~. 

Figures 10 and 11 show the graphs obtained from a very rapid switching of the 
heat source. The printing cycle is 47. For the graphs in Fig. 10, the on-off ratio 
is two, for those in Fig. 11 the on-off ratio is four. 

FIG. 7. Graphs of temperature distribution in thermal print head with printing cycle = 20~ 
and on-off ratio = 4. 

FIG. 8. Graphs of temperature distribution in thermal print head with printing cycle = 101 
and on-off ratio = 2. 
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4.000 

t 

FIG. 9. Graphs with a reduced vertical scale of temperature distribution in thermal print 
head with printing cycle = 10~ and on-off ratio = 4. 

FIG. 10. Graphs of temperature distribution in thermal print head with printing cycle = 47 
and on-off ratio = 2. 

FIG. 11. Graphs of temperature distribution in thermal print head with printing cycle = 47 
and on-off ratio = 4. 

In all cases, exceedingly good results have been obtained and are representative 
of what one would expect in practice. (However, see Section 5.) The experiments 
reported above represent just a few of the numerical experiments carried out. 
From these and other numerical experiments like them, a manufacturer could 
achieve a required pattern of temperature distributions in a projected thermal 
print head merely by changing the printing periods, the on-off ratios, or other 
physical constants defining the thin film and glass substrate. 
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5. CONCLUDING REMARKS 

As mentioned in the previous section, many more numerical experiments were 
carried out than those reported here. In all cases, the model was three-space- 
dimensional with 1000 points taken to represent the unit cube. The algorithm 
took on the average 50 set to compute 10 time steps when the print out was 
required every 10 time steps and went up to 50 set for 6 time steps when print 
out was required at each time step; this increase being by virtue of the computa- 
tional method [6] rather than increased printing time. In contrast, the A.D.I. 
scheme reported in Ref. [lo] would take approximately ten times as long to 
compute the same points. Consequently, using the A.D.I. schemes would mean a 
severe curtailment in the number of experiments which could be performed. 
Further, the developmental work required to use the Hopscotch scheme is 
considerably less than the A.D.I. schemes. Clearly, for the excellent results 
obtained, the developmental and computational aspects of the Hopscotch scheme 
make it a very attractive scheme to use for the complicated physical problems 
in several space dimensions as exemplified by the physical problem in Section 2. 

We must, however, end this paper on a note of warning. It has been found 
for certain combinations of the physical constants used taken in conjunction 
with the size of the mesh ratio being large, that meaningless results can be obtained. 
This effect can be obtained even with a homogeneous partial differential equation 
when the exponential function in the solution has a large negative argument. 
These effects, of course, are due to the local truncation error (for those physical 
constants and mesh ratios alluded to above) being large. That is, although the 
difference scheme is unconditionally stable, in certain circumstances the local 
truncation error becomes so large so as to swamp the true solution. In this case, 
by the incorporation of a suitable error control similar to those currently used 
in the solution of ordinary differential equations, the local truncation error can 
be kept small, i.e., by a reduction of the mesh ratio in the neighbourhood of 
large local truncation errors. 

We mention this aspect out of interest only since, for the physical problem, 
we have considered it was necessary to take a small mesh ratio and particular 
physical constants which did not give rise to the above-mentioned behaviour. 
This behaviour has received considerable attention in the numerical solution of 
ordinary differential equations but, to our knowledge, very little attention in 
partial differential equations. 
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